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ABSTRACT

The deviations of a gear’s real tooth surface from the theoret-
ical surface are determined by coordinate measurements at the
grid of the surface. A method has been developed to transform
the deviations from Cartesian coordinates to those along the nor-
mal at the mcasurement locations. Equations are derived that
telate the first order deviations with the adjustment to the man-
ufacturing machine-tool settings. The deviations of the entire
surface are minimized. The minimization is achieved by appl-
cation of the least-square method for an overdetermined system
of linear equations. The proposed method is illustrated with a
numerical example for hypoid gear and pinion.

INTRODUCTION

Coordinate measurements of gear Looth surfaces coupled with
the ability to correct the initially applied machine-tool settings
is becoming a significant part of advanced gear technology. We
may consider two stages of this technique:

(1) Application of coordinate measurements of the manufac-
tured gears for numerical determination, in 3D space, of devia-
tions of real tooth surfaces.

(it) The goal of minimization of deviations can be achieved
by proper corrections of initially applied machine-tool settings.
The determination of corrected machine-tool settings is found
numerically.

The technological aspects of the problem to-be discussed are
as follows:

(i) The deviations of real tooth surfaces are inevitable due to
surface distortion by heat-treatment, errors of initial machine-
tool settings, deflection by manufacturing, etc.

(i1) Application of an additional finishing operation for elim-
ination of the deviations would be too expensive in compari-
son with the approach bhased on corrections of initially applied
machine-tool settings. The advantage of this approach is the
possibility of using the same equipment to correct the deviations.

The disadvantage is that the approach wiil be successful only it
the deviations are repeatable.

(iii) The coordinate measurements must be performed with
high precision, which currently prohibits them from being per-
formed simultanecusiy with the manufacturing. Therefore, the
coordinate measurements are performed alter manufacturing, but
only the first gear of the whole gear set to-be manufactured is
tested.

(iv) In some cases master-gears are used and the coordinaia
measurements provide the information about the deviations from
the master-surface for the surface being tested. The authors
consider this approach less effective as comnared to computerized
determination of surface deviations and corrections of machine-
tool settings.

The mathematical solutions to this problem are represented
in the Appendix to this paper. The technique described in the
paper has been developed in the response to the increasing re-
quirements of high quality gear transmissions. Minimizing the
deviations of real tooth surfaces results in a reduction in the
level of transmission errors that cause gear noise and vibration.

The proposed approach is applied to hypoid gear drives that
have found a wide application in transmissions (1.2]. The con-
tents of the paper are complemented with a numerical cxample
for a hypoid pinion and gear Lo illustrate the effectivencss of the
proposed approach. The level of deviaticns of the pinion surface
has been reduced from 30 microns to the theoretical level of 2-3
TMicrons.

1. OVERVIEW OF MEASUREMENT AND MOD-
ELLING METHOD

The approach developed in this paper enables the determi-
nation of deviations of a real surface from the known theoretical
surface. This is accomplished by two steps: (i) coordinate mca-
surements for determination of surface deviations and (ii) min-
imization of the deviations Lthrough correction of the previously
applied machine-tool settings.




The surface deviations obtained initially in Cartesian coor-
dinates are transformed into deviations along the normal to the
theoretical surface. The coordinate measurements are performed
by a machine with four or five degrees-of-freedom. In the case of
four degrees-of-freedom, the probe performs three translational
motions (fig. 1); the fourth motion, rotation, is performed by a
rotary table. The axis of rotational motion coincides with the
axis of the workpiece. In the case of a five degree-of-freedom ma-
chine, the fifth degree of {freedom is used to provide the deflections
of the probe in the direction of the normal to the throretical sur-
face. The probe is provided with a changeable spherical surface
whose diameter can be chosen from a wide range.

Backface-Base Plan- ]
_ 1

Rotary Table

Cear Probe

Backface-Base Plane ,_I___‘__L

1

L NI

! Rotary Table
Fig. 1. Surface Measurement.

The motions of the probe and the workpiece by coordinate
measurements are computer controlled and therefore a grid com-
prising of the set of surface points to be measured must be chosen
{fig- 2). There is a reference point on the grid that is necessary
for the initial instaliments of the probe. There are two orienta-
tions of the probe installment that are used to measure a gear
(fig. 1{(a)) and a pinion {fig. (b)), depending on the angle of the
pitch cone.

Fig. 2. Grid.

The mathematical aspects of coordinate measurements will
now be described [2]: First, it is necessary to derive the equa-
tions of the theoretical surface. In many cases this surface can
be derived as the envelope to the family of generating surfaces.
namely the tool surfaces. Next, the results of coordinate mea-
surements must be transformed into deviations of the real surface
represented in the direction of the surface normal. Then. the re-
lations between the surface variations and the corrections to the
machine-tool settings must be determined. The surface devi-
ations obtained from coordinate measurements and the surface
variations deterrmmned by the corrections of machine-tool settings
can be represented by an overdetermined system of lincar equa-
tions. The number of these equations, %, is equal to the number
of points of the grid, and the number of unknowns. m. is equal
to the number of corrections of machine-tool settings {m < &).
The optimai solution to such a system of linear equations results
in the determination of the machine-tool setting corrections.

2. EQUATIONS OF THEORETICAL TOOTH SUR-
FACE &,

Considering that the theoretical surface can be determined
directly, we represent it in coordimate systemn &, in two parametne
form as

r(u,0), n(u ) Vit
Here: r, and n, are the position-vector and the surface uni nor-
mal, respectively; (u.8) arc the Gaussian cocrdinates {suiface
coordinates).

For the case when surface £, is the eavelope to the famiiv
of generating surface L., we represent surface &, and the unit
normal n, to £, in S; as [3]

re = Mtcrc(ucygc)r f(ucsoca 0)=0 Ry

ne = Ltcnc(uc,Oc), f(“:‘ocso) =0 130
Here: {u.,8.) are the Gaussian coordinates of the generating sur
face £.; ¢ is the generalized parameter of motion in the process
for generation. The equation of meshing is given by:

flue,b.,0) = N v =g (4]

where N is the normal to X, v{) is the relative motion for
a point of contact of L. and Z,. The 4 x 4 matrix M,. and
3 x 3 matrix L,. describe the coordinate transformation from =.
to S, of a position vector and surface unit normal. respectively
Position vertors in 3-1) space are represented with homogeneous
coordinates.

3. COORDINATE SYSTEMS USED FOR COORDI-
NATE MEASUREMENTS

Coordinate systems S,, and S; are rigidly connected to the
coordinate measuring machine (CMM) and the workpiecc being
measured, respectively (fig. 3). The hack face of the gear 1s in-
stalled Hush with the base plane of the CMM. The distance i
between the origins O, and O, is known but the parameter of
orientation § must be determined (see section ). The coordi-

2




nate transformation from S, to S,, is represented by the matrix
equation

tm = I\/[mtrt (

W
—

Zom 2t

Fig. 3. Coordinate Transformation.

4. GRID AND REFERENCE POINT

The grid is a sct of points on ¥, chosen as points of contact
between the probe and L, (fig. 3). Fixing the value of z, for the
point of the grid, and the valuc of, say y; (or I.), we can obtain
the following equations

yl(uiyoi)=hi) z((uhai)zll (1:' l!!k) (6)
where k is the number of grid points.
We consider k; and [; as given and solve equations (6) for

(u:,8;). Then we can determine the position vectors and the
unit normals for k points of the grid using the equations

i = fzdui, 0) p(uin0) 2w, @), =1,k (7)

0 = g, 65) nyp(ui 8) na(un,0))F, (i=1,...,k) (8)

The position vector for the center of the probe, if the devia-
tions are zero, is represented by the equation

D= (i=1,..,k) 9

where p is the radius of the probe tif.
The reference point

1l = [z(u'®,0) y(u@,00) 2@ 9T (10)
is usually chosen as the mean point of the grid.

The center of the probe that corresponds i .l e polii
on L, is determined from equation (9) as

R = (X,(u®,09) Yi(u®,07) Z,u® 0 ()

Here: (u!?,8(%) are known values.

The ccordinates of the reference center of ne probe arc rep-
resented in coordinate system S, of the measuring machine by
the matrix equation

R = M. (6) R{” (12)
Equation (12) yields

.rﬁ,?) = Isg)(g, u(® 910
9 = 4005, 00) (13)

20 = {05, 40 g

The three equaticas (13) contain four unknuwns:o, {2,543
z{®. To solve thes: equations we may consider that one of the
coordinates of the reference point of the probe center. say yi,
may be chosen equal to zero. Then the system of equations
(13) allows the determination of &, (%! and =% [2]. Coordinates
2, 40 = 0,21 are necessary for the initial installment of the
center of the probe.

5. DEVIATIONS OF THE REAL SURFACE

The deviations of the real surface are caused by errors of man-
ufacturing, heat treatment, ctc. Vector positions of the center of
the probe for the theoretical surface and the real curface can be
represcnted as follow

R

Il

rm(u19)+pnm(ua0) (1”

R}, = £ (,0) + Anp(u,0) (i5)

Here: r,, and n,, are the position vector and the unit normal
to the theoretical surface, respectively, that are represented in
coordinate system S, of the measuring machine: A determincs
the real location of the probe center and is considered along the
normal to the theoretical surface; R., and R, represent in S,

the position vector of the probe center for the theoretical and
real surfaces, respectively. Equations (14) and (15) yteld

R, - R. = (A= pn, = Ann, (16)

and

An= (R} - R.) n, (17

The position vector R}, is determined by coordinate measure-
ments for points of the grid. Equation (17) determines numeri-
rally the function:

An, = Dny(u,8)  (i=1,... k) (18)

that represents the deviations of the real surfacs for pack neint

o .1
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6. MINIMIZATION OF DEVIATIONS

The procedure of minimization of deviations can be repre-




sented in two stages: (i) detcrmination of variations of theoret-
ical surface caused by changes of applied machine-tool settings,
and (ii) minimization of deviations of real surface by appropriate
correction of machine-tool scttings.

We consider that the theoretical surface is represented in S,
as

ro=rfu.d,d) (G=1,...,m) (19)

where parameters d, are the machine-tool settings.
The surface variations are represented by

Or, 0!'( 0rt .
= 20
ér, = Em —du + 0 —680 + E Bd {(20)

We multiply both sides of equation (20) by the surface unit
. r Jr
normal n, and take inlo account that —07' ‘n, = JL:

: 381;; nd %—-— lie in the plane that is tangent to the surface. Then

we obtain:

n, = 0 since

n‘)éd,- =Y abd, (21)

j=1

QJIQ)

We can now consider a system of k linear equations in m
unknowns (m < k) of the following structure

Gn(sd‘ + On(‘)‘d'z + ...+ a‘médm = b\
......................................................... (22)
anéd) + aj28dy + ... + akmbdy = b
Here:
b = &n, = (R, = Rmi) - 0 (23)
where i designates the number of grid point; a,, (s = 1, ..., &

j =1, ..., m) represent the dot product of partial derivatives

T, .
—— and unit normal n,.

dad

The system of linear equations (22) is overdetermined since
m & k. The essence of the procedure of minimization of de-
viations is determination of such unknowns &d, (j =1, ..., m}
that will minimize the difference between the left and right sides
of equations (22). The solution was accomplished by the least-
square method. The subroutine DLSQRR of IMSL MATH /
LIBRARY {4} was used for computerization of the procedure.

The success of minimization of deviations depends on the
number of parameters that may be varied (the number of ma-
chine-tool settings that may be corrected). The number of pinion
machine-tool settings is larger than for the gear. The minimiza-
tion of deviations can be performed for each pinion tooth side
scparately. However, it must be performed simultaneously for
both sides of the gear tooth since the gear is cut by the duplex
method. For these reasons the minimization of deviations for the
pinion is more eifect' - than for the gear (see below the numerical
examples).

7. APPLICATION TO INSPECTION OF FORMATE
HYPOID GEAR

Each tooth side of a formate face-milled gear is generated by

(a)
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Fig. 4. Generating Cones for Format Face-milled Gear.

a cone and the gear tooth surface is the surfacc of the generating
cone. Two cones that are shown in fig. 4(a) represent both sties
of the gear space. The following equations represent in coordinate
system S, gear surfaces for both sides and the unit normals o
such surfaces (fig. 4(b))

[ —sG cosag
{re — sgsinag)sinbg
r.= {24
(re = sgsinag) cos O¢

!

sinag

n.=1| —cosagsinlg {25)

[ SS—

| —cosogcos Ag

Here: r. is the position vector and n. is the surface umit normal.
. is the cutter tip radius; ag is the cutter blade angle {wg > 0
for the concave side and ag < 0 for the convex side).

Fig. 5 shows the installment of the generating cone on the
cutting machine. Coordinate systems S, and S, arc rigidly con-
nected to the cutting machine and the gear being generated,
respectively. Systems S., S, and S, are rigidly connected to each
other sinre the gear is formate cut (nio reiative ~ywctior beiweca
the cutter and workpiece). To represent in S, the theoretical gear
tooth surface &; and the unit normal to £, we use the following
matrix equations

r(sc.8c.d,) = M, re(sg. ) (20)
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Fig. 5. Machine-tool Settings for Formate [ace-milled Gear.

n‘('qcyocyd]) = Llc nc(SG.oc) (27)

where

I\IIzc = M(o Moc

cosYy 0 —sinyy, 0 100 0

~ 0 1 o0 0 010 -V
| sinym 0 cosyn -AX. || 0 0 1 H,
o 0 o0 1 000 I

The surface Gaussian coordinates are sg and ¢ and d; (v,
Va2, Hz and AX,,) are the machine-tool settings.

The numerical example presented in this paper is based on
the experiment that has been performed at the Dana Corpora-
tion (Fort Wayne, USA). The initial deviations An for each side
of real tooth surface have been obtained by measurements on a
coordinate measuring machine (fig. 1). The grid for the mea-
surements is formed by nine sections along the tooth length with
each section having five points. The number k of grid points is
therefore 45 and the reference point is at the middle of the grid,
(i.e., the third point of the fifth section). In thc measurement,
the coordinate y!? of the reference point is chosen to be zcro
and the alignment angle é is determined from solving cquation
system (13).

The minimization of deviations was performed in accordance
to the algorithm described in scction 6 for the formate cut gear.
The measurement of the initial and final deviations are shown
in figures 6-8. The machine-tool settings initially used and cor-
rected are shown in Table 1.

7. EQUATIONS OF PINION THEORETICAL TOOTH
SURFACE

The pinion tooth surface is generated as the envelope to the
family of tool surfaces that are cone surfaces (fig. 9).
Henceforth, we will consider the {ollowing coordinale systems:
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Table 1: Results of Gear Minimization
Machine Setting Initial Corrected
Pressure Angle ag 21.25° 21.25°
Cutter Diameter, mm (in) 228.6 (9) 228.G (%)
Point Width of Cutter, mm (in) 2.03 (.08) 2.03 {.08)

V3, mm (in) 103.252550 (4.06506) | 103 25220 (4 06505)

H3, mum (in) 27 4666 (1.08136)
Y. rad.

AXm, mm (in)

17 21603 (107150}
1059816 1 06437

0.009677 {00038) l -0.53343 {-0 0210)

(i) the fixed ones, Sq (zo, yo. Z0) and S; (zq, y,, 3¢) that are ngudly
connected to the cutting machine (iig. 10 and fig. 11); (i) the
movable coordinate systems S, and S, that are rigidly connected
to the cradle of cutting machine and the pinion, respectively;
(ili) coordinate system S, that is rigidly connected to the head
cutter. In the process of generation the cradle with 5. periorms
rotatinnal motion about the z,-axis with angular velocity w!.
and the pinion with S, performs rotational motion about the
z,-axis with angular velocity w'® (fig. 11).

The tool (head-cutter) is mounted on the cradle and performs
rotational motion with the cradle. Coordinate system S, s nigidly
connected to the cradle. To describe the instaliment of the tool
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Fig. 10. Cutting Machine and Cradle Coordinate Systems.

with respect to the cradle we use coordinate system 5, (fig. 9 and
fig. 10). The required orientation of the head-cutter with respect
to the cradle is accomplished as [ollows: (i) coordinate systems
Sy and S, are rigidly connected and then they are turned as one
rigid body about the z.-axis through the swivel angle j = 27 — §
(fig. 10); (ii) then the head-cutter with coordinate system S, is
tilted about the y;-axis under the angle 1 (fig. 9(b)). The head-
cutter is rotated about its axis z, but the angular velocity in this

Yo

£ o

Fig. 11. Angular Velocitics of Cradle and Pinion.

motion is not related with the generation process and depends
only on the desired velocity of cutting.

It will be shown later that the deviations of real pinion tooth
surface can be minimized by corrections of parameters of instali-
ment of the pinion and the head-cutter. These pimon setting
parameters are E,,- the machine offset, v, - the machine-roat
angle, AB- the sliding base, AA- the machine center to back
(fig. 11). The head-cutter settings parameters are: 5;- radial
setling, 0.~ initial value of cradle angle, ;- the swivel angle
(fg. 10) , and - the tilt angle (fig. 9(b)).

Tool Surface Equations
The head-cutter surface is a cone and is represented 1n 5,

(fig. 9) as

(re + ssina)cos?
r.+ ssina)sinf
rs,0) = ( 129

— 5 COS ¥

|

Here: (s,8) are the Gaussian coordinates, a is the blade angle
and r. is the cutter point radius. Vector {unction (29} with o
positive and a negative rcpresents surfaces of two head.cutters
that are used to cut the pinion concave side and convex side,
respectively.

The unit normal to the head-cutter surface is represented in
S by the equations

n,=[~cosacosf —cosasinf - sin a}T (30}

The Family of Tool Surfaces is represented in S, by the matrix
equation

rP(svax ¢v) = MW qu IvIrlo I\’Ioc [\’I'b Nlbl l‘,(ﬁ,U) (”)

Here: S, is an auxiliary fixed coordinate system whose axes par-
allel to S, axes.




cos: 0 sint 0
0 1 0 0
Mbl = . )
—sint 0 cost O
0 0 0 1
~sinj —cos) 0 Spy
cosj -—siny 0 O
Mcb =
0 0 1 0
0 0 0 1
cosq sing 0 0
—-sing cosq 0 0
M, = q q
0 0 190
0 0 01
1 00 0
010 E.
M, =
001 -AB
000 1
costm 0 sinym —-AA
0 1 0 0
M, =
~siny, 0 cosynm 0
0 0 0 1
1 0 0 0
M,, = 0 cosg, sing, 0
0 —sing, cosg, 0
0

0 0 \

6 =27 ~j; ¢ = 0.+ m¢, where 8, is the initial cradle angle
and mg, = wl fwlP),

Equation of Meshing
This equation is represented as (3]:

n® . yler) = N L ler) f(s,0,8,) =0 (32)

where n” and N are the unit normal and the normal to the
tool surface, and v{?) is the velocity in relative motion.

Equation (32) is invariant with respect to the coordinate sys-
tem where the vectors of the scalar product are represented.
These vectors in our derivations have been represented in S, as
follows,

n, = L,. Ly Ly ng

v = (Wl =~ W) xn]+ (O0A x W)

Here:

r, = I\/Ioc Mcb I\/Ib. re

OOA=[0 "Em ‘/—\‘B]T
WP = ~[cosy 0 siny]T ; (JuiPi=1)
W =—[0 0 my]T

Pinion Tooth Surface

Equations (31) and (32) represent the pinion tooth surface
in three-parametric form with parameters 5.0 and o,. However.
since equation (32) is linear with respect to s we can eliminate
s and represent the pinion tooth surface in two-parametric form
as

rp(0,¢5,d;) (33)

Here: d; (j = 1,...,8) designate the installment parameters:
Em, 4m, OB, DA, Sg, 0., j and 1.
The normal to the pinion tooth surface is represented as

n,(8, ¢p, d) (34)

where d; (k = 1,2,3,4) designate the installment parameters
Ym,0:,7 and 7.

Results of Minimjzation
Fig. 12 and fig. 13 illustrate the initial deviations Ab; of the

real surface, that have been obtained by measurements and cal-
culations for the concave side and convex side, respectively. The
blank data, the basic machine-tools settings, the corrections of
machine-tool settings and the corrected machine-tool settings are
shown in Table 2-3. Based on the corrected machine-taol set-
tings, we can manufacture a new surface that will optimally it
the theoretical surface after the surface is distorted by manufac-
turing processes and heat treatment. The minimized deviations
between the new surface and the theoretical surface are shown in
fig. 14 and fig. 15. These figures confirm the effectiveness of the
proposed approach. The deviations of approximately 30 microns
have been reduced to 2-3 microns.

8. CONCLUSION

A general approach for computerized determination of Jeui
ations of a real surface from the theoretical one based on coordi-
nate measurements has been proposed. An algorithm for mini-
mization of deviations by corrections of initially applied machine-
tool settings through application of a least square approach has
been developed. The approach is illustrated with an example of
the tooth surface of a hypoid pinion and gear.
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Table 2: Blank Data of Hypoid Pinion

Number of Teeth = 13

Table 3: Basic, Corrected, and Machine-Toot Setting Diiferences of the Pinion

(Unit: Length in mm; Angle in rad.)

Machine Setting Basic Marhine-Tool Settings | Corrected Machine-Tool Settings Setting Differences
Convex Side | Concave Side | Convex Side Concave Side Convex Side Concave Side
Basic Tilt Angle 0.3761899 0.4104054 0.3712125 04360375 | -0.4977365E-02 0.2$63208E-01
Swivel Angle 5.766247 6 000656 5.768892 6.042021 0.2644968E-02 0 4136530E-01
Machine Root Angle 6.233736 6.2129372 6.236861 6.202894 0.3125239E-02 | -0.2647799E-01
Cradle Angle 4.846199 1.566173 4.845308 1.573228 | -0.8908187E.03 0 TOS4806E-02
Radial Setting 114.0236 109.6660 113.6455 110.4463 -0.3780939 0.7803197
Sliding Base 23.87000 14.82000 23.87000 14.82000 | 0 OOOCOOOE+00 | 0.000000OE + 00
Machine Center to Back 3.280000 -3.100000 3.767510 -3.970493 0 $769074E-01 -0.55402¢9
Blank Offset -40.12000 -34.58000 -39.63248 -35.45049 0.1875103 -0.8704921
Cutiing Ratio 0.3020446 0.3230215 0.3020446 0.3230215 | 0.0000000E+00 | 0 0OGOOOOE +00
Cutter Point Radius 114.9350 113.0300 114.9350 113.0300 | 0.0000000E+00 | 0 00OVOVOE +00
Cutter Blade Angle -0.5410521 0.2443461 -0.5410521 02443161 0 0000000E +00 | 0 GOO00OOF. + 00
8
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